JOM 23218

Über Tetraaryl-Methan-Analoga in der Gruppe 14

II *. $Ph_{4-n}Si-p-Tol_n$ und $Ph_{4-n}Sn-p-Tol_n$ (n = 0 bis 4): Einfluß der *p*-Tolyl-Substituenten auf Struktur und NMR-chemische Verschiebungen

Michael Charissé **, Valérie Gauthey *** und Martin Dräger

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim-Becher-Weg 24, W-6500 Mainz (Deutschland)

(Eingegangen den 31. August 1992)

Abstract

The title compounds have been synthesized by Li and Grignard reactions. The crystal structure of Ph₃Si-p-Tol has been determined. The substitution of only one phenyl by one p-tolyl group causes only a slight deviation from the ideal S_4 symmetry of Ph₄Si. Gradual replacement of phenyl by p-tolyl groups leads to increasing low field shifts for all ¹³C(*ipso*) atoms. The substitution of the first phenyl group by p-tolyl in Ph₄Si and Ph₄Sn results in a high field shift both for $\delta(^{29}Si)$ (-0.3 ppm) and for $\delta(^{119}Sn)$ (-1 ppm). Further replacement shows nearly linear dependencies ($\Delta\delta(^{29}Si) = -0.1$ ppm, $\Delta\delta(^{119}Sn) = +1.5$ ppm per p-tolyl group).

Zusammenfassung

Die Titelverbindungen wurden dargestellt durch Li- und Grignard-Reaktionen. Die Kristallstruktur von Ph₃Si-*p*-Tol wurde bestimmt. Der Ersatz nur einer Phenyl- durch eine *p*-Tolyl-Gruppe verursacht nur eine geringe Abweichung von der idealen S_4 -Symmetrie des Ph₄Si. Sukzessiver Ersatz von Phenyl- durch *p*-Tolyl-Gruppen führt zu zunehmendem Tieffeldshift für alle ¹³C(*ipso*)-Atome. Der Austausch einer ersten Phenyl- gegen eine *p*-Tolyl-Gruppe in Ph₄Si und Ph₄Sn äußert sich in einem Hochfeldshift sowohl für $\delta(^{29}Si)$ (-0.3 ppm) als auch für $\delta(^{119}Sn)$ (-1 ppm). Weiterer Ersatz zeigt nahezu lineare Abhängigkeiten ($\Delta\delta(^{29}Si) = -0.1$ ppm, $\Delta\delta(^{119}Sn) = +1.5$ ppm pro *p*-Tolyl-Gruppe).

1. Einleitung

Im Rahmen von Untersuchungen über Gruppe 14-Ketten mit Tolyl-Substitution [2,3] untersuchen wir hier den Einfluß der *p*-Tolyl-Gruppe auf Struktur und Eigenschaften von Tetraarylmethananaloga der allgemeinen Form $Ph_{4-n}M$ -*p*-Tol_n mit M = Si und Sn. Nachfolgend werden Synthesen, Röntgenstrukturanalyse des Ph_3Si -*p*-Tol und NMR-spektroskopische Daten der beiden vollständigen Reihen mit n = 0, 1, 2, 3 und 4 aufgeführt.

2. Synthesen

Die Darstellung der Tetraarylmethananaloga erfolgte durch Reaktion chlorierter Ausgangsverbindungen mit Li-Organylen (Gl. (1)) (M = Si, R = p-Tol, n = 1-3; M = Sn, R = o-Tol, n = 2) oder entsprechendem Grignard-Reagenz (Gl. (2)) (M = Sn, R = p-Tol, n = 1-3). Ph_{4-n}MCl_n + nLiR $\xrightarrow{\text{Diethylether}}$ Ph_{4-n}MR_n + nLiCl (1) Ph_{4-n}MCl_n + nRMgBr $\xrightarrow{\text{THF}}$

```
Ph_{4-n}MR_n + nMgBrCl (2)
```

Correspondence to: Prof. Dr. M. Dräger.

^{*} I. Mitteilung siehe Lit. 1.

^{**} Mit Teilen der geplanten Dissertation von M. Charissé.

^{***} Beiträge aus einer im Rahmen des Erasmus-Programmes der Europäischen Gemeinschaft an der Johannes Gutenberg-Universität angefertigten Maitrise-Arbeit (Université de Bourgogne, Dijon, 1992).

3. Röntgenstrukturanalyse

Das Ph₃Si-*p*-Tol kristallisiert in der orthorhombischen Raumgruppe *Pbca* (Nr. 61). Die Struktur konnte bei einem Reflex/Parameter-Verhältnis von 12.2 (Si und Methyl-C anisotrop, aromatische C-Atome isotrop) bis R = 0.0915 verfeinert werden. Abbildung 1 zeigt das gefundene Molekül, Lage- und Temperaturparameter sind in Tabelle 1 zusammengefaßt. Tabelle 2 enthält Bindungsgeometrien des Ph₃Si-*p*-Tol und Tabelle 3 die Verdrillung der Arylgruppen.

Bereits von uns vorgenommene Analysen der Geometrien und Symmetrien von Tetraaryl-Methan-Analoga der allgemeinen Form Ar_4M (M = C, Si, Ge, Sn, Pb) [1] zeigen, daß für die Einnahme einer speziellen Molekülsymmetrie die Natur der Substituenten und die Grösse des Zentralatoms verantwortlich ist. So besitzen die Moleküle für Ar = Ph alle ideale S_4 -Symmetrie. Charakteristisch sind die zwei vom idealen Tetraederwinkel abweichenden C-M-C-Winkel, die zur Beschreibung des Moleküls mit S_4 -Gestalt dienen (Ph₄Si: 108.1°, 110.1° [4]). Ebenso sind zur Beschrei-

Abb. 1. Gefundenes Ph_3Si -*p*-Tol-Molekül (Zuordnung der C-Atome zu den Ph- und *p*-Tol-Gruppen siehe Tabelle 1). Die eingezeichnete "fiktive" S_4 -Achse beschreibt näherungsweise die Symmetrie des Moleküls bezüglich Bindungswinkeln und Verdrillung der vier aromatischen als äquivalent angenommenen Gruppen. Das " C_1 -symmetrische" Gesamtmolekül ist entlang dieser Achse "gestaucht".

TABELLE 1. Atomlagen und Temperaturfaktoren von Ph₃Si-p-Tol

Gruppe	Atom	x	у	Z	U _{eq} ^a	
	Si	0.0927(3)	0.1875(1)	0.13174(6)	0.056(1)	
Ph(1)	C(11)	0.2512(10)	0.1216(4)	0.1014(1)	0.057(1) ^b	
	C(12)	0.3943(11)	0.1579(4)	0.0802(2)	0.073(2) ^b	
	C(13)	0.5131(12)	0.1111(5)	0.0567(2)	0.081(2) ^b	
	C(14)	0.4920(13)	0.0294(5)	0.0548(2)	0.083(2) ^b	
	C(15)	0.3579(11)	-0.0091(5)	0.0758(2)	0.082(2) ^b	
	C(16)	0.2356(11)	0.0360(4)	0.0995(2)	0.068(2) ^b	
Ph(2)	C(21)	0.2414(10)	0.2536(4)	0.1635(1)	0.056(1) ^b	
	C(22)	0.3917(11)	0.2180(4)	0.1845(2)	0.066(2) ^b	
	C(23)	0.4997(12)	0.2652(5)	0.2092(2)	0.078(2) ^b	
	C(24)	0.4715(12)	0.3469(5)	0.2133(2)	0.085(2) ^b	
• .	C(25)	0.3274(12)	0.3841(5)	0.1923(2)	0.093(2) ^b	
	C(26)	0.2141(12)	0.3374(4)	0.1675(2)	0.076(2) ^b	
Ph(3)	C(31)	-0.0658(10)	0.1206(4)	0.1617(1)	0.057(2) ^b	
	C(32)	-0.1964(10)	0.0712(4)	0.1431(2)	0.068(2) ^b	
	C(33)	-0.3164(12)	0.0195(4)	0.1643(2)	0.076(2) ^b	
	C(34)	-0.3062(12)	0.0185(4)	0.2037(2)	0.078(2) ^b	
' -	C(35)	-0.1812(11)	0.0673(4)	0.2230(2)	0.078(2) ^b	
	C(36)	-0.0605(11)	0.1194(4)	0.2022(2)	0.070(2) ^b	
<i>p</i> -Tol(4)	C(41)	-0.0584(10)	0.2520(4)	0.0996(1)	0.055(1) ^b	
•	C(42)	-0.0373(11)	0.2557(4)	0.0595(2)	0.067(2) ^b	
	C(43)	-0.1580(11)	0.3029(4)	0.0364(2)	0.072(2) ^b	
	C(44)	-0.2994(11)	0.3464(4)	0.0530(2)	0.065(2) ^ь	
	C(45)	-0.3225(11)	0.3455(4)	0.0920(2)	0.069(2) ^b	
	C(46)	-0.2060(10)	0.2984(4)	0.1154(2)	0.064(2) ^b	
Me(4)	C(47)	- 0.4246(15)	0.3969(5)	0.0268(2)`	0.121(8)	

^a $U_{eq} = 1/3$ der Spur des orthogonalen U_{ii} -Tensors. ^b Isotropes U.

TABELLE 2. Bindungsgeometrie des gefundenen Ph_3Si_{-P} -Tol-Moleküls

Bindungslängen	(Å)	Bindungswinkel (°)				
Si-C(11)	1.878(7)	C(11)-Si-C(21)	108.2(3)			
Si-C(21)	1.869(7)	C(11)-Si-C(31)	109.6(3)			
Si-C(31)	1.883(7)	C(11)-Si-C(41)	109.8(3)			
Si-C(41)	1.871(7)	C(21)-Si-C(31)	110.6(3)			
		C(21)-Si-C(41)	110.8(3)			
Si-C	1.875	C(31)-Si-C(41)	107.5(3)			
C-C _{arom}	1.386	CSi-C	109.5			
C(44)-Me(4)	1.516(13)					

bung aller Phenylgruppenverdrillungen nur drei Torsionswinkel nötig (Ph₄Si: 7.6°, 52.0°, 68.3°, berechnet aus den Lageparametern bei Lit. 4).

Das Si-p-Tol₄ hingegen lässt auch näherungsweise keine ideale Molekülsymmetrie erkennen. Zur Beschreibung sind sechs verschiedene Bindungswinkel und 12 voneinander verschiedene Torsionswinkel nötig, die keinerlei Systematik erkennen lassen [1]. Die Mole-

TABELLE 3. Verdrillung der aromatischen Gruppen des gefundenen Ph₃Si-p-Tol-Moleküls

Torsionswinkel (°)	
C(11)-Si-C(21)-C(22)	- 47.2(6)
-C(31)-C(32)	-65.1(7)
-C(41)-C(42)	- 6.7(7)
C(21)-Si-C(11)-C(12)	- 51.9(7)
-C(31)-C(32)	+ 4.4(6)
-C(41)-C(42)	+ 67.3(6)
C(31)-Si-C(11)-C(12)	-7.2(6)
-C(21)-C(22)	+ 73.2(6)
-C(41)-C(42)	- 53.7(6)
C(41)-Si-C(11)-C(12)	+ 69.1(7)
-C(21)-C(22)	- 12.4(5)
-C(31)-C(32)	+ 54.5(7)

külgestalt wird festgelegt durch ein Wechselspiel zwischen "Anziehung der aromatischen Bereiche" und "Abstoßung der aliphatischen Bereiche" der p-Tolyl-Gruppen (vgl. [5]).

Das Ph₃Si-p-Tol als Zwischenglied zwischen reiner Phenyl- und reiner p-Tolyl-Substitution besitzt ebenso

TABELLE 4. ¹³C-NMR-Daten der Phenylgruppen (δ (ppm), ⁿJ(¹³C-¹¹⁹Sn) (Hz)) in Ph_{4-n}Si-p-Tol_n und Ph_{4-n}Sn-p-Tol_n (CDCl₃, gesättigte Lösung)

Verbindung	C(1)(ipso)		C(2,6)(ortho)		C(3,5)(meta)		C(4)(para)
	δ	¹ J	δ	² J	δ	³ J	δ	⁴ <i>J</i>
Ph ₄ Si [7]	134.3		136.5		127.9		129.6	
Ph ₃ Si-p-Tol	134.5		136.4		127.8		129.5	
Ph ₂ Si-p-Tol ₂	134.8		136.5		127.8		129.4	
PhSi-p-Tol ₃	135.1		136.5		127.8		129.4	
Ph ₄ Sn [8]	138.0	531	137.3	37.5	129.1	52.0	128.6	11.3
Ph ₃ Sn-p-Tol	138.2	529	137.3	36.8	128.6	50.8	129.1	11.7
Ph ₂ Sn-p-Tol ₂	138.4	а	137.2	37.6	128.6	51.1	129.0	a
PhSn-p-Tol ₃	138.6	а	137.2	37.0	128.6	49.9	129.0	а
Ph ₂ Sn-o-Tol ₂	138.8	a	137.3	37.0	128.6	49.9	128.9	11.0

^a Kopplungs-Satelliten nicht eindeutig erkennbar.

TABELLE 5. ¹³C-NMR-Daten der *p*-Tolyl-Gruppen (δ (ppm), ^{*n*}J(¹³C-¹¹⁹Sn) (Hz)) in Ph_{4-n}Si-*p*-Tol_n und Ph_{4-n}Sn-*p*-Tol_n (CDCl₃, gesättigte Lösung)

	C(1)(ipso)		C(2,6)(ortho)		C(3,5)(meta)		C(4)(para)	
δ	¹ <i>J</i>	δ	² J	δ	³ J	δ	⁴ <i>J</i>	δ
130.5		136.4		128.8	•	139.6		21.4
130.8		136.4		128.7		139.5		21.5
131.1		136.5		128.7		139.4		21.5
131.3		136.4		128.7		139.3		21.5
134.0	а	137.3	36.8	129.6	52.3	139.0	12.6	21.4
134.2	а	137.2	37.6	129.5	а	138.9	a	21.4
134.4	539	137.2	39.1	129.5	52.5	138.9	114	21.4
134.5	537	137.2	38.6	129.4	52.7	138.8	11.4	21.5
	δ 130.5 130.8 131.1 131.3 134.0 134.2 134.4 134.5	δ ¹ J 130.5 130.8 131.1 131.3 134.0 a 134.2 a 134.4 539 134.5 537	δ ^{1}J δ 130.5 136.4 130.8 136.4 131.1 136.5 131.3 136.4 134.0 a 137.3 134.2 a 137.2 134.4 539 137.2 134.5 537 137.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a Kopplungs-Satelliten nicht eindeutig erkennbar.

Verbindung	C(1)(ip	so)	C(2)(or	tho)	C(3)(m	eta)	C(4)(p	ıra)	C(5)(m	eta)	C(6)(or	tho)	C(Me))
	δ	¹ <i>J</i>	δ	² J	δ	³ J	δ	⁴ <i>J</i>	δ	³ J	δ	^{2}J	δ	³ <i>J</i>
Ph ₂ Sn-o-Tol ₂	139.2	517	145.2	32.3	129.6	43.0	129.4	8.9	125.6	52.9	137.7	40.4	25.2	28.0
Sn-o-Tol ₄ [9,10]	139.8	521	145.1	32.1	129.6	42.3	129.2	10.5	125.8	51.8	137.5	41.0	24.9	27.0

TABELLE 6. ¹³C-NMR-Daten der ο-Tolyl-Gruppen (δ (ppm), ⁿJ(¹³C-¹¹⁹Sn) (Hz)) in Ph₂Sn-ο-Tol₂ und Sn-ο-Tol₄ (CDCl₃, gesättigte Lösung)

wie das Si-p-Tol₄ keine ideale kristallographische Symmetrie. Bildet man jedoch für die C-M-C-Bindungswinkel zwei mittlere Werte (jeweils aus den beiden kleinsten und den vier größten Winkeln) vom Betrag $107.9^{\circ} \pm 0.4^{\circ}$ und $110.3^{\circ} \pm 0.5^{\circ}$, so stellt man nur geringe Abweichungen von den Ph₄Si-Werten fest. Bei den Torsionswinkeln erhält man drei Werte mit nahezu gleicher Standardabweichung $7.7^{\circ} \pm 3.4^{\circ}$, $51.8^{\circ} \pm 3.3^{\circ}$, $68.7 \pm 3.4^{\circ}$, die sich ebenfalls von den Verdrillungen des Ph₄Si kaum unterscheiden.

Das Ph_3Si-p -Tol steht demnach strukturell dem Ph_4Si noch sehr nahe: der Ersatz von nur einer Phenyl-Gruppe durch eine *p*-Tolyl-Gruppe bewirkt nur eine geringe Abweichung von der idealen S_4 -Symmetrie.

4. NMR-Spektroskopie

Die ¹³C-NMR chemischen Verschiebungen der Phenvlkohlenstoffatome der Si- und Sn-Verbindungen zeigt Tabelle 4. Die Werte der p-Tolyl- und o-Tolyl-Gruppen finden sich in den Tabellen 5 und 6. Beim Ersatz eines Si-Atoms durch ein Sn-Atom kommt es bei gleichen Substituenten zu systematischen Veränderungen der jeweiligen C-Atomsorten. So werden die direkt gebundenen C(ipso)-Atome am stärksten zu tieferem Feld verschoben (Phenyl-Gruppen: 3.5-3.7 ppm, p-Tolyl-Gruppen: 3.2-3.5 ppm), die C(ortho)- (Phenylund p-Tolyl-Gruppen: 0.7-0.9 ppm) und C(meta)-Atome (Phenyl-Gruppen: 0.8–1.2 ppm, p-Tolyl-Gruppen: 0.7-0.8 ppm) weniger ausgeprägt. Bei den C(para)-Atomen zeigt sich ein Hochfeldshift um 0.4-1.0 ppm (Phenyl-Gruppen) bzw. 0.5–0.6 ppm (p-Tolyl-Gruppen). Die bei einem Ersatz des Siliciums durch Zinn in homologen Verbindungen auftretende gleichmässige Tieffeldverschiebung der C(ipso)-Atome lässt auf eine höhere Elektronegativität des Zinns gegenüber

TABELLE 7. ²⁹Si-NMR chemische Verschiebungen der Verbindungen Ph_{4-n}Si-p-Tol_n (CDCl₃, gesättigte Lösung, δ (ppm))

Ph ₄ Si [11]	Ph ₃ Si-p-Tol	$Ph_2Si-p-Tol_2$	$PhSi-p-Tol_3$	Si- <i>p</i> -Tol ₄ [1]
- 13.98	- 14.29	- 14.36	- 14.42	- 14.55

Silicium schliessen (thermochemische Pauling-Elektronegativitäten 1.90 für Si und 1.96 für Sn [6]).

Phenyl- und *p*-Tolyl-Gruppen liegen mit ihren chemischen Verschiebungen teilweise weit auseinander. Die C(ipso)-Atome der *p*-Tolyl-Gruppen sind in gleichen Molekülen gegenüber denen der Phenyl-Gruppen um 4.0-4.5 ppm hochfeldverschoben. Der Unterschied bei den C(ortho)- und C(meta)-Atomen ist nicht grösser als 1 ppm. Die C(para)-Atome werden um 9.9-10.1 ppm hochfeldverschoben, unabhängig davon ob Silicium oder Zinn das Zentralatom ist.

Innerhalb einer Verbindungsreihe mit gleichem Zentralatom bewirkt der sukzessive Ersatz einer Phenyl-Gruppe durch eine p-Tolyl-Gruppe bei den C(ipso)-Atomen beider Substituenten einen Tieffeldshift um 0.2–0.3 ppm pro ausgetauschter Gruppe: p-Tolyl-Substituenten im Molekül wirken auf die C(ipso)-Atome der Aryl-Gruppen entschirmend.

Tabelle 7 enthält die ²⁹Si-NMR chemischen Verschiebungen aller fünf möglichen Tetraarylmethananaloga des Si mit Ph- und p-Tol-Substitution Ph_{4-n} -Si-p-Tol_n. Mit zunehmender Anzahl der p-Tolyl-Gruppen wird das ²⁹Si-Signal hochfeldverschoben. Dabei bewirkt der Ersatz der ersten Phenylgruppe durch eine p-Tolyl-Gruppe mit $\Delta \delta = 0.3$ ppm eine deutlichere Veränderung als der weiterer Gruppen; pro weitere eingeführte p-Tolyl-Gruppe tritt nur noch ein Hochfeldshift um -0.1 ppm auf. Abbildung 2 zeigt eine Auftragung der chemischen Verschiebungen gegen die Anzahl der p-Tolyl-Gruppen im Molekül. Für n =1-4 wurde eine Trend-Gerade eingezeichnet, die die stärkere Abweichung des Ph₄Si-Wertes verdeutlicht.

Bei den ¹¹⁹Sn-NMR chemischen Verschiebungen der Verbindungen Ph_{4-n}Sn-p-Tol_n (n = 0-4) aus Tabelle 8

TABELLE 8. ¹¹⁹Sn-NMR chemische Verschiebungen der Verbindungen Ph_{4-n}Sn-p-Tol_n^a (CDCl₃, gesättigte Lösung, δ (ppm))

Ph₄Sn	Ph ₃ Sn-p-Tol	$Ph_2Sn-p-Tol_2$	$PhSn-p-Tol_3$	Sn-p-Tol ₄ [2]
-128.1 ^b	– 129.1 °	- 127.7	- 126.1	- 124.6

^a $\delta(Ph_2Sn$ -o-Tol₂) = -124.7; $\delta(Sn$ -o-Tol₄) = -124.5 [10]. ^b Stark schwankende Literaturangaben. Der angegebene Wert [12] trifft nach unseren Beobachtungen zu. ^c -67.4 ppm (CH₂Cl₂) in Tab. 2 von Lit. 13; die Ursache der Diskrepanz gegenüber unserem Wert ist unklar.

Abb. 2. Auftragung von ²⁹Si-NMR chemischen Verschiebungen gegen die Anzahl der *p*-Tolyl-Gruppen bei Ph_{4-n}Si-*p*-Tol_n mit eingezeichneter Ausgleichsgerade für n = 1-4.

liegt die Systematik anders als bei den ²⁹Si-Werten: auf einen anfänglichen Hochfeldsprung von $\Delta \delta = -1$ ppm folgt eine kontinuierliche Tieffeldverschiebung um +1.5 ppm pro Ersatz einer Ph- durch eine *p*-Tol-Gruppe. In Abb. 3 sind die chemischen Verschiebungen gegen die Anzahl der *p*-Tolyl-Gruppen im Molekül aufgetragen.

5. Experimentelles

5.1. Darstellung von Ph₃Si-p-Tol

Zu 20 mmol *p*-TolLi (in 50 ml Diethylether) tropft man bei Raumtemperatur innerhalb 3 h 5.75 g (20

Abb. 3. Auftragung von ¹¹⁹Sn-NMR chemischen Verschiebungen gegen die Anzahl der *p*-Tolyl-Gruppen bei $Ph_{4-n}Sn$ -*p*-Tol_n mit eingezeichneter Ausgleichsgerade für n = 1-4.

mmol) Ph₃SiCl (in 50 ml Diethylether) und lässt das Reaktionsgemisch weitere 15 h rühren. Nach vorsichtiger Hydrolyse mit 50 ml einer 1 N HCl trennt man beide Phasen, trocknet die Etherphase über Na₂SO₄ und rotiert bis zur Trockne ein. Den verbleibenden Rückstand kristallisiert man aus Ethanol/Toluol (4/1) um. Ausbeute 3.28 g (48%) weißes Pulver, Schmelzpunkt 135–137°C. Analyse: Gef.: C, 85.47; H, 6.38. C₂₅H₂₂Si (350.54) ber.: C, 85.66; H, 6.33%.

5.2. Darstellung von Ph₂Si-p-Tol₂

Zu 7.60 g (30 mmol) frisch destilliertem Ph_2SiCl_2 , vorgelegt in 50 ml Diethylether, tropft man innerhalb 3 h 60 mmol *p*-TolLi (in 50 ml Diethylether) und läßt die Mischung 15 h bei Raumtemperatur und anschließend 1 h unter Rückfluß rühren. Nach vorsichtiger Hydrolyse mit 50 ml einer 1 N HCl trennt man beide Phasen, trocknet die Etherphase über Na_2SO_4 und rotiert bis zur Trockne ein. Den verbleibenden leicht gelblichen Rückstand kristallisiert man zweimal aus Ethanol um. Ausbeute 4.49 g (41%) weißes Pulver, Schmelzpunkt 115–116°C. Analyse: Gef.: C, 85.49; H, 6.73. $C_{26}H_{24}Si$ (364.56) ber.: C, 85.66; H, 6.64%.

5.3. Darstellung von PhSi-p-Tol₃

Zu 80 mmol *p*-TolLi (in 50 ml Diethylether) tropft man bei Raumtemperatur innerhalb 3 h 5.55 g (26 mmol) frisch destilliertes PhSiCl₃ (in 50 ml Diethylether) und läßt das Reaktionsgemisch weitere 15 h rühren. Nach vorsichtiger Hydrolyse mit 50 ml einer 1 N HCl trennt man beide Phasen, trocknet die Etherphase über Na₂SO₄ und rotiert bis zur Trockne ein. Den verbleibenden Rückstand kristallisiert man aus Ethanol/Toluol (1/1) um. Ausbeute 4.28 g (44%) weißes Pulver, Schmelzpunkt 176°C. Analyse: Gef.: C, 85.55; H, 6.96. C₂₇H₂₆Si (378.59) ber.: C, 85.66; H, 6.92%.

5.4. Darstellung von Ph₃Sn-p-Tol

8.74 g (23 mmol) Ph₃SnCl (in 40 ml THF) werden langsam zu 34 mmol *p*-TolMgBr (in 65 ml THF) zugetropft und das Reaktionsgemisch weitere 5 h unter Rückfluß erhitzt. Nach vorsichtiger Hydrolyse mit 50 ml einer 1 N HCl wird die Mischung am Rotationsverdampfer bis zum Ausfallen eines Feststoffes einrotiert. Der abfiltrierte und getrocknete Rückstand wird einer Extraktion nach Soxhlet mit Toluol unterworfen und das Produkt aus Ethanol/Toluol (3/1) umkristallisiert. Ausbeute 5.60 g (55%) weiße Nadeln, Schmelzpunkt 119°C (Lit.: 124°C [14]). Analyse: Gef.: C, 67.67; H, 4.94. C₂₅H₂₂Sn (441.14) ber.: C, 68.07; H, 5.03%. Für Mößbauer-Daten vgl. Lit. 15.

5.5. Darstellung von Ph₂Sn-p-Tol₂

7.91 g (23 mmol) Ph_2SnCl_2 (in 40 ml THF) werden langsam zu 68 mmol *p*-TolMgBr (in 65 ml THF) zugetropft und das Reaktionsgemisch weitere 6 h unter Rückfluß erhitzt. Nach vorsichtiger Hydrolyse mit 50 ml einer 1 N HCl wird am Rotationsverdampfer einrotiert bis zum Ausfallen eines Feststoffes. Der abfiltrierte und getrocknete Rückstand wird einer Extraktion nach Soxhlet mit Toluol unterworfen und das Produkt aus Ethanol umkristallisiert. Ausbeute 5.65 g (54%) weißes Pulver, Schmelzpunkt 108°C. Analyse: Gef.: C, 68.71; H, 5.36. C₂₆H₂₄Sn (455.17) ber.: C, 68.61; H, 5.31%.

5.6. Darstellung von PhSn-p-Tol₃

6.00 g (20 mmol) Ph₃SnCl (in 40 ml THF) tropft man langsam zu 102 mmol *p*-TolMgBr (in 65 ml THF) und erhitzt die Mischung weitere 7 h unter Rückfluß. Nach Hydrolyse mit 50 ml einer 1 N HCl wird das Rohprodukt durch Zugabe von Ethanol ausgefällt, abfiltriert, getrocknet und aus Ethanol/Toluol (1/1) umkristallisiert. Ausbeute 6.61 g (61%) weiße Nadeln, Schmelzpunkt 156°C. Analyse: Gef.: C, 69.10; H, 5.59. $C_{27}H_{26}Sn$ (469.19) ber.: C, 69.12; H, 5.59%.

5.7. Darstellung von Ph₂Sn-o-Tol₂

20 mmol o-TolLi (in 50 ml Diethylether) tropft man bei Raumtemperatur innerhalb 3 h zu 3.44 g (10 mmol) Ph₂SnCl₂ (in 50 ml Diethylether) und rührt das Reaktionsgemisch weitere 12 h. Die Reaktionslösung wird durch Zugabe von etwas fein gepulvertem NH₄Cl, Entfernen des Lösungsmittels im Rotationsverdampfer und Extraktion aus der Hülse mit Chloroform aufgearbeitet. Das erhaltene Rohprodukt kristallisiert man aus Ethanol/Toluol (3/1) um. Ausbeute 2.00 g (44%) weiße Nadeln, Schmelzpunkt 129–130°C. Analyse: Gef.: C, 68.57; H, 5.41. C₂₆H₂₄Sn (455.17) ber.: C, 68.61; H, 5.31%.

5.8. Röntgenstrukturanalyse

Während die symmetrischen Verbindungen Ar_4M alle gut kristallisieren, bereitet die Gewinnung von Einkristallen der asymmetrisch substituierten Methan-Analoga große Schwierigkeiten.

Einkristalle des Ph_3Si -*p*-Tol wurden erhalten durch Herstellung einer halbgesättigten Lösung in siedendem Ethanol und langsames Absenken der Temperatur von 60 auf 38°C mit einem Gradienten von 1°C Tag⁻¹. Es resultieren dünne lange Nadeln von meist niedriger Qualität. Die Dichtebestimmung erfolgte in wässriger Polywolframat-Lösung durch Schwebemethode. Zur kristallographischen Untersuchung durch Weißenberg-Aufnahmen (Goniometer der Fa. Huber and Stoe) und zur Sammlung der Reflexintensitäten (Kappa-Dif-

TABELLE 9. Kristallographische Daten und Details der Strukturbestimmung von Ph₃Si-p-Tol

Kristalldaten (Mo K α 1, λ = 0.70	0926 Å)
Summenformel, Molmasse	C ₂₅ H ₂₂ Si, 350.54
Kristallform	Nadel mit sechseckigem Querschnitt
Flächenindizes	100, -100 (0.70)
(Abstand vom Ursprung	010, 0–10 (0.06)
im Kristallzentrum (mm))	001, 00-1 (0.09)
	01-1, 0-11 (0.09)
Kristallfarbe	farblos
Symmetrie	orthorhombisch
Raumgruppe	<i>Pbca</i> (Nr. 61)
Gitterkonstanten	a = 7.157(2) Å
	b = 16.263(3) Å
	c = 34.512(6) Å
zentrierte Reflexe, θ -Bereich	61, 16–21°
Elementarzellvolumen (Å ³), Z	4017(1), 8
Dichten d_{ront} , d_{exp} (g/cm ³)	1.160, 1.159
Datensammlung (Mo $K\overline{\alpha}$, $\lambda = 0$.71069 Å)
Messtemperatur (°C)	22
Aufnahmebereich ω -scan.	
θ (°), sin θ_{max} / λ	1.5-28, 0.661
Messdauer (d)	10
Intensitätsabfall (%)	3
Korrektur	linear
unabhängige Reflexe	4854
verwendete Reflexe	
mit $I > 1\sigma(I)$	1454
μ (cm ⁻¹)	0.87
Transmissionsbereich	0.9896-0.9826
Lösung und Verfeinerung der St	ruktur
Parameterzahl, (Refl./Param.)	119 (12.2)
R-Wert	0.0915
R _g -Wert	0.0896
Gewichtssetzung w^{-1}	$\sigma^2(F) + 0.00074F^2$

fraktometer CAD4 der Fa. Enraf-Nonius) wurden die Einkristalle in Glaskapillaren so an einer Ecke festgeklebt, daß eine Indizierung noch problemlos möglich war. Kristallographische Daten und Details zur Strukturbestimmung sind in Tabelle 9 aufgeführt. Die Bestimmung der Si-Lage erfolgte durch Direktmethode. Fourier- und Differenzfourier-Synthesen lieferten die C-Atome. Der zur Intensitätsmessung verwendete Kristall bildete einen Kompromiß zwischen Kristallqualität und -Größe; trotzdem übertrafen nur 1454 der 4854 unabhängigen Reflexe die Meßintensität um mehr als eine Standardabweichung. Zur Erreichung eines noch akzeptablen Reflex/Parameter-Verhältnisses von 12.2 wurde nur das Si-Atom und das Methyl-C-Atom anisotrop verfeinert: hieraus erklärt sich der schlechte R-Wert. Die Lagen der H-Atome wurden rechnerisch bestimmt ("reitend") und mit je einem gemeinsamen Temperaturfaktor für die aromatischen bzw. Methyl-H-Atome behandelt (Methyl-H-Atome: Fixierung des

Temperaturfaktors auf 0.20). Die abschließende Differenzfourier-Synthese ergab keinerlei Hinweis auf eine mögliche statistische Verteilung der *p*-Methylgruppe über die vier aromatischen Gruppen. Alle Berechnungen wurden im Zentrum für Datenverarbeitung der Universität Mainz (VAX-Cluster) mit shelx-76, shelx-86 [16] und lokalen Programmen durchgeführt. Tabellen der F_o/F_c -Werte und der vollständigen Lage- und Temperaturfaktoren können angefordert werden.

5.9. NMR-Spektroskopie

Spektrometer Bruker WP80/DS DEPT-Pulsfolge bei 20°C; Meßfrequenzen: ¹³C bei 20.15 MHz; ²⁹Si bei 15.92 MHz; ¹¹⁹Sn bei 29.88 MHz (externer Standard: Me₄Sn); Lösungen von 100–200 mg/3 ml CDCl₃ (Aldrich Nr. 15, 182-3).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Literatur

1 M. Charissé, S. Roller und M. Dräger, J. Organomet. Chem., 427 (1992) 23.

- 2 C. Schneider und M. Dräger, J. Organomet. Chem., 415 (1991) 349.
- 3 N. Kleiner und M. Dräger, J. Organomet. Chem., 293 (1985) 323.
- 4 V. Gruhnert, A. Kirfel, G. Will, F. Wallrafen und K. Recker, Z. Kristallogr., 163 (1983) 53.
- 5 C. A. Hunter und J. K. M. Sanders, J. Am. Chem. Soc., 112 (1990) 5525.
- 6 A. L. Allred, J. Inorg. Nucl. Chem., 17 (1961) 215.
- 7 M. J. Vaickus und D. G. Anderson, Org. Magn. Res., 14 (1980) 278.
- 8 B. Mathiasch, Org. Magn. Res., 17 (1981) 296.
- 9 C. Schneider-Koglin, K. Behrends und M. Dräger, J. Organomet. Chem., 448 (1993) 29.
- 10 C. Schneider-Koglin, B. Mathiasch und M. Dräger, J. Organomet. Chem., 448 (1993) 39.
- 11 R. H. Cragg und R. D. Lane, J. Organomet. Chem., 277 (1984) 199.
- 12 B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 16 (1985) 73; J. Holecek, M. Nadvornik, K. Handlir und A. Lycka, J. Organomet. Chem., 241 (1983) 177.
- 13 J. D. Kennedy, W. McFarlane und G. S. Pyne, J. Chem. Soc., (1975) 1234.
- 14 E. Krause und M. Schmitz, Ber. Dtsch. Chem. Ges., 52 (1919) 2150; F. B. Kipping, J. Chem. Soc., (1928) 2365.
- 15 V. V. Khrapov, V. I. Gol'danskii, A. K. Prokof'ev und R. G. Kostyanovskii, Zh. Obshch. Khim., 37 (1967) 3; J. Gen. Chem. USSR, 37 (1967) 1; Chem. Abstr., 66 (1967) 109968k.
- 16 G. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge, 1976; SHELX-86, Göttingen, 1986.